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Contingency tables are among the most basic and useful techniques available for analyzing categorical data,

but they produce highly imprecise estimates in small samples or for population subgroups that arise following

repeated stratification. I demonstrate that preprocessing an observed set of categorical variables using a

latent class model can greatly improve the quality of table-based inferences. As a density estimator, the latent

class model closely approximates the underlying joint distribution of the variables of interest, which enables

reliable estimation of conditional probabilities and marginal effects, even among subgroups containing fewer

than 40 observations. Though here focused on applications to public opinion, the procedure has a wide range

of potential uses. I illustrate the benefits of the latent class model–based approach for greatly improved

accuracy in estimating and forecasting vote preferences within small demographic subgroups using survey

data from the 2004 and 2008 U.S. presidential election campaigns.

1 Introduction

Contingency tables are among the most basic and widespread statistical tools available to analyze multi-
variate categorical data. When investigating patterns of association between two or more categorical var-
iables, cross-tabulation provides the joint, marginal, and conditional distributions of variables of interest,
describing the probabilities of various outcomes and the effects of changes in one or more variables on the
probabilities of another. These table-based statistics are so easily constructed and easily understood that they
pervade not only academic quantitative research but also commercial and journalistic data analysis as well.

In practice, contingency table analysis is limited by the fairly restrictive constraint that cross-tabulating
by additional variables rapidly increases the number of cells in the table, which, for fixed, finite samples,
greatly reduces the frequency of observations per cell—ultimately, to zero. The greater the amount of
stratification (i.e., variables in the contingency table), the more sparsely distributed the data will be across
cells in the observed cross-tab, and the greater the sample-to-sample variability in estimates of cell per-
centages and conditional effects. This makes it nearly impossible to produce reliable inferences from
sample to population, especially in moderate- to small-sized samples. Researchers are typically forced
to limit stratification to at most three or four categorical variables, even when much of theoretical value
could be learned from additional stratification—had only the sample size been larger.

This scenario is often encountered in the analysis of public opinion survey data, which are nearly
always categorical (Asher 2007, 194), and which motivate the examples in this paper. As Heeringa, West,
and Berglund (2010, 113) observe, ‘‘experience has shown that many survey analysts often ‘push the
limits’ of survey design, focusing on rare or highly concentrated subclasses of the population.’’ What
motivates this practice is an expectation of finding variation in the attitudes and behaviors of individuals,
even within broader social or demographic subgroups: Many of the most interesting and useful intragroup
differences only appear following repeated stratification. Campaign strategists, for example, study cross-
tabular reports to help identify narrow segments of ‘‘swing voters’’ to target with persuasive appeals (e.g.,
Cillizza 2007; Jamieson 2009). Political reporters rely heavily on the descriptive analysis of contingency
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tables to uncover patterns of mass support for policies and politicians (e.g., Balz and Johnson 2009; Todd
and Gawiser 2009). Social scientists commonly use multivariate survey data to test hypotheses about
critical subpopulations as in the studies by Leal et al. (2005), de la Garza and Cortina (2007), and
Abrajano, Alvarez, and Nagler (2008) of Hispanic voters in the 2004 U.S. presidential election—a group
comprising less than 10% of the national electorate (Taylor and Fry 2007). In each case, although con-
tingency table analysis can be used to reveal multivariate relationships and investigate confounding, the
data eventually ‘‘run out.’’ The generalized linear and hierarchical regression models that many social
scientists employ to get around this obstacle may not be necessary or appropriate for applied practitio-
ners—andmay, depending upon the nature of the data and the hypothesis being investigated, be ill-advised
or unhelpful in much academic research as well (Achen 2002, 2005). Still, the current practice of not
reporting table-based statistics when cell sizes are small, due to the high degree of estimation uncertainty
involved, is clearly suboptimal as long as the data set contains other information that might be exploited to
reduce the variance of these estimates.

In this paper, I introduce a simple but reliable tool to address this basic, but important, problem. The
solution is based on a statistical technique for density estimation in cross-classification tables known as
latent class analysis.The latent classmodel is afinitemixturemodelmost commonlyused to identify clusters
of similar observations in multivariate categorical data. I demonstrate that fitting a latent class model to an
observed multiway contingency table prior to analysis results in an estimate of the underlying probability
mass function that is both more stable, and closer, on average, to the true underlying distribution than the
‘‘raw’’ observed cell percentages. From thesemodel-based cell percentage estimates, it is straightforward to
produce estimates of both conditional probabilities andmarginal effects. To illustrate howdramatically (and
how easily) the method can improve the reliability of table-based inferences, I apply it to the problem of
estimating features of—and forecasting vote preferenceswithin—small demographic subgroups, using sur-
veydata collected frompreelection and exit polls surrounding the 2004 and2008U.S. presidential elections.

The benefit to applied researchers is the possibility of obtaining precise estimates of characteristics of
small subgroups—population prevalence, conditional probabilities, and marginal effects—even when
repeated stratification leaves fewer than 40 observations in the subgroup of interest. Because latent class
analysis is based on a parametric model of individuals’ multivariate responses, it is particularly well suited
for contingency tables of high dimension, containing a large proportion of empty cells (or ‘‘sampling
zeros’’) for outcome variables that are dichotomous or polytomous and nominal or ordinal. The issue
of how to improve small cell estimates in sparse contingency tables can also be handled using nonpara-
metric kernel-based methods, but selection of the smoothing parameter becomes a crucial consideration,
especially as tables increase in size (Aitchison and Aitken 1976; Titterington 1980; Hall 1981; Grund
1993). An extensive literature on Bayesian approaches to the estimation of multinomial cell probabilities
offers another potential solution (see Agresti and Hitchcock 2005; Congdon 2005), although such tech-
niques still require careful attention to the choice of prior distributions and model specification to control
the amount of smoothing applied to each cell.

In contrast to these alternative approaches, the latent class model–based method has the further ad-
vantage of being relatively uncomplicated to implement and interpret. Software to estimate the latent class
model, and to perform the necessary postestimation calculations, is freely available as part of poLCA, a
package for polytomous variable latent class analysis implemented in the R statistical computing
environment (Linzer and Lewis 2010; R Development Core Team 2010).

2 Latent Class Models as Density Estimators

Density estimation refers to a broad class of statistical procedures used for empirically approximating the
distribution of variables in a population, given a sample drawn from that population. Although the under-
lying distribution is unobserved, the idea is that it can be recovered based upon observed patterns in the
data. Finite mixture models are a parametric approach to density estimation that assumes that the unknown
generating distribution for the observed data can be approximated as a weighted sum of a finite number of
component distributions for which the functional form is known (McLachlan and Peel 2000; Fraley and
Raftery 2002). The choice of component distributions is left to the researcher but typically depends on
known features of the observed data: are they continuous or discrete, univariate or multivariate, and so
forth. Once this decision has been made, estimation of the model consists of estimating all the parameters
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of the component distributions, as well as a vector of ‘‘mixing’’ proportions—summing to one—that rep-
resent the weights assigned to each component.

Latent class models are a type of finite mixture model appropriate for producing density estimates of the
joint distribution of two or more categorical variables.1 Such distributions are commonly expressed as
multiway cross-classification tables over the observed (or ‘‘manifest’’) variables of interest.2 The latent
class model fits the observed contingency table by ‘‘mixing’’ together component distributions that are
themselves cross-classification tables of identical dimension to the observed table; but within each com-
ponent table, all variables are assumed to be statistically independent. This assumption is referred to as
‘‘conditional’’ or ‘‘local’’ independence. Estimating this model is equivalent to assuming that any con-
founding among the manifest variables can be explained by stratifying the observed multiway table by an
unobserved (latent) nominal categorical variable. The inferred value of this category for each observation
is its latent ‘‘class.’’

An intuitive way to conceptualize the latent class model is to think of a population as being comprised
of a finite number of ‘‘types’’ of individuals. Within each type—or class—individuals produce responses
to the manifest variables in a consistent manner. In political terms, ‘‘conservatives’’ might respond to
survey questions in one way, whereas ‘‘liberals’’ all respond differently. The classification of types, how-
ever, is not directly observable—and may not even be this clear-cut. The ability of the latent class model is
to identify and separate out clusters of similar individuals based upon the observed pattern of responses to
a series of categorical variables. The latent groupings are characterized by the probabilities with which
individuals of each type provide each of the possible responses; and because the model is probabilistic, it
accounts for a certain amount of sampling variability. The latent class model then ‘‘reassembles’’ the
classes to produce an overall summary—the density estimate—of the joint distribution of the manifest
variables in the population.

2.1 Specification of the Latent Class Model

Assume that individuals i 5 1, . . ., N produce a series of responses on manifest variables indexed j 5
1, . . ., J, each of which contains a finite number of outcomes, Kj. These variables form a J-way
contingency table containing a total of C5

QJ
j5 1 Kj cells. Denote as Yijk the observed data, such that

Yijk 5 1 if individual i produces the kth outcome on the jth variable, and Yijk 5 0 otherwise. Let R
represent the number of latent classes in the model, which is fixed by the analyst prior to estimation.
Then r 5 1, . . ., R indexes the component cross-classification tables, with pr representing the R mixing
proportions such that

P
r pr 5 1. The parameters estimated by the model are the mixing proportions pr,

and the conditional probabilities that an individual in class r produces the kth outcome on the jth
manifest variable, denoted pjrk.

Following the assumption of local independence, the probability of individual i producing its particular
set of J responses on the manifest variables, assuming it belongs to class r, is

f ðYi; prÞ5
YJ

j5 1

YKj

k5 1

�
pjrk

�Yijk ; ð1Þ

the product of the respective class-conditional marginal percentages. The probability mass function across
all R latent classes is then

PrðYi; p; pÞ5
XR

r5 1

pr
YJ

j5 1

YKj

k5 1

�
pjrk

�Yijk : ð2Þ

1The technique of latent class analysis was first set forth by Lazarsfeld (1950) under the name latent structure analysis and expanded
upon by Goodman (1974a, 1974b), among others. Hagenaars and McCutcheon (2002) provide a broad and useful overview of
recent advances in latent class modeling. Also see Bartholomew et al. (2008, Chapter 10).

2Latent class models can be modified to accommodate manifest and latent variables that are either ordered or unordered, but it is
sufficient here to use the simple classical latent class model that treats both types of variables as unordered.
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The parameters of the latent class model may be estimated by maximizing the log-likelihood function

ln L5
XN

i5 1

ln
XR

r5 1

pr
YJ

j5 1

YKj

k5 1

�
pjrk

�Yijk ð3Þ

with respect to pr and pjrk. Bayesian estimation of the latent class model is also feasible, given properly
specified prior distributions, as in Garrett and Zeger (2000).

Estimating the latent class model with a sufficient number of latent classes produces a fully parame-
terized probability mass function that closely approximates the unobserved underlying joint distribution of
the variables of interest in the population. The question of how many latent classes are ‘‘sufficient’’ is of
some importance, as this determines the amount of smoothing that is applied to the observed contingency
table. Setting R 5 1 is equivalent to assuming that all J variables are statistically independent; larger values
of R produce fits closer to the observed data and hence greater sample-to-sample variability. Selection of
an ‘‘optimal’’ number of latent classes to identify clusters present in the data set has been considered by
Bandeen-Roche et al. (1997), Garrett and Zeger (2000), Huang (2005), and Nylund, Asparouhov, and
Muthén (2007), among others. For the purposes of density estimation, however, slightly underfitted mod-
els have the benefit of reducing the variance of cell percentage estimates. The evidence that I present below
suggests that R 5 2 is an appropriate and useful choice.

The expected percentage of the population in each cell of the fitted J-dimensional table is easily cal-
culated by inserting estimates p̂r and p̂jrk into equation (2). Denote as yc the sequence of J outcomes
corresponding to the cth cell in the fitted contingency table, such that ycjk 5 1 if cell c contains the
kth response on the jth variable, and ycjk 5 0 otherwise. Then, the estimated probability mass function
produced by the latent class model is

P̃ðycÞ5
XR

r5 1

p̂r
YJ

j5 1

YKj

k5 1

ðp̂jrkÞycjk ð4Þ

for cells c 5 1, . . ., C. The model-based estimate P̃ðycÞ of the population percentage PðycÞ in each cell is
the weighted sum (by p̂r) of the products of a cell’s estimated marginal probabilities in each component
table.

By comparison, the maximum likelihood estimate (MLE), P̂ðycÞ, of the population cell percentage is
equal to the observed number of cases in cell c divided by the total number of observations, N. For high-
dimensional contingency tables—especially with many outcomes per manifest variable and small-
to-moderate sample sizes—a nonnegligible proportion of cells will contain zero observations. For those
cells, P̂ðycÞ5 0; even though it is unlikely that in the underlying population, the ‘‘true’’ percentage of
cases with the set of characteristics yc is ever exactly zero. Agresti and Hitchcock (2005, 298) remark
simply that ‘‘for a cell with a sampling zero, 0.0 is usually an unappealing estimate.’’ The cell percentage
estimate P̃ðycÞ based on the latent class model, however, will always be greater than zero (if only slightly).

As a density estimator, the latent class model is effectively ‘‘filling in’’ the (problematic) zero cells in the
samplecross-classification table,whereasat thesametime‘‘smoothingout’’someof thesamplingvariability
in both the zero cells and the nonzero cells. The ‘‘meanings’’ of the latent classes, which in applications
focusing on clustering or scaling would be revealed by interpreting the estimated p̂jrk parameters, are of
no special importancewhenusing latent classmodels for density estimation; a point emphasized byVermunt
et al. (2008, 377–378).

2.2 Demonstration of Density Estimation

To illustrate how the latent class model bridges the gap between an observed sample distribution and the
underlying (unobserved) population distribution, I reanalyze exit poll data collected following the 2004
U.S. presidential election by the National Election Pool, Edison Media Research, and Mitofsky Interna-
tional (2004). Because the sample was so large—a total of 13,719 voters were interviewed—I treat the
observed cell percentages as the ‘‘known’’ population percentages. Tabulating responses to six questions
measuring respondents’ race, sex, income, age, marital status, and political ideology produces a six-way
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table with 480 cells corresponding to each potential six-response sequence.3 Demographic categories such
as these are regularly used by political researchers to yield information of interest about public opinion and
voting behavior.

I now draw a random subsample of just 200 of the original 13,719 respondents and tabulate the same six
variables. In the subsample shown in Fig. 1, 75% of the cells contain zero observations, and another 15%
have just one observation. The solid black curve represents the cumulative distribution function of the
population cell percentages, sorted by relative frequency from lowest to highest. The dashed line repre-
sents the cumulative distribution function of MLEs P̂ðycÞ for the sample of 200. The population and sam-
ple distributions are clearly highly dissimilar.

Yet, there remains enough structure even in the small 200-person sample to estimate a latent class
model that recovers something close to the original ‘‘population’’ distribution. Fitting a latent class model
to the same sample of 200 observations, and calculating model-based cell percentages P̃ðycÞ, vastly im-
proves the estimate of the underlying population distribution—regardless of the choice of number of latent
classes.4 The gray lines in Fig. 1 represent the cumulative distribution of estimated cell frequencies based
on models assuming one through four latent classes. A latent class model that assumes too few compo-
nents R will result in an underfitted model with the gray line slightly above the solid line, whereas a model
with too great an R will be overfitted and fall somewhat further beneath the solid line. But in all cases, the
latent class model–based estimates are much closer to the population distribution than are the MLEs.

As an additional illustration, I plot the observed cell percentages in the 200-person sample against their
corresponding known population cell percentages (Fig. 2). The horizontal ‘‘stripes’’ in the left-hand plot
correspond to sample cells with zero through six observations; the sample is not large enough to estimate
the cell percentages with any greater precision. In contrast, the model-based estimates of the cell percen-
tages, following fitting by a two-class latent class model, are much more consistently close to the true
values. This is the key insight from which the improvements to various methods of contingency table
analysis discussed in this article all follow.
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Fig. 1 Cumulative distribution of cell percentages in a 6-variable, 480-cell cross-classification table, using data from
the 2004 U.S. presidential election national exit poll. The solid black curve represents the population distribution
P(yc), whereas the dashed line represents cell percentages P̂ðycÞ obtained from a random sample of 200 respondents.
Gray lines reflect latent class model–based estimates P̃ðycÞ assuming R 5 1 through R 5 4 latent classes: Fewer latent
classes produce greater smoothing, whereas more latent classes produce a fit closer to the observed data.

3Outcome categories for each variable are coded as follows. Race: white and nonwhite. Sex: male and female. Yearly household
income: $0–30,000, $30–50,000, $50–75,000, $75–100,000, and >$100,000. Age in years: 18–29, 30–44, 45–64, and older than 65.
Marital status: married and unmarried. Ideology: conservative, liberal, and moderate.

4All latent class models used in this paper are estimated bymaximum likelihood using the R package poLCA (Linzer and Lewis 2010;
R Development Core Team 2010). The poLCA package can automatically compute the model-based cell percentages P̃ðycÞ follow-
ing estimation of a latent class model.
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2.3 From Cell Percentages to Conditional Probabilities

In many studies, the quantity of interest is a conditional probability rather than the unconditional cell per-
centage PðycÞ. For example, researchers may wish to estimate the percentage of white males with incomes
over $100,000 who are also political conservatives. But this is just a function of two cell percentages: the
population prevalence of individuals who are white, male, wealthy, and conservative, divided by the per-
centage of the population that is white, male, and wealthy. The conditional probability is easily calculated:

Prðconservative jwhite; male; wealthyÞ5Prðwhite; male; wealthy; conservativeÞ
Prðwhite; male; wealthyÞ :

The term in the denominator, Pr(white, male, wealthy), is equal to the sum Pr(white, male, wealthy, lib-
eral) 1 Pr(white, male, wealthy, moderate) 1 Pr(white, male, wealthy, conservative). Any conditional
probability of interest can be produced in this manner, given an estimate—either the MLE, P̂ðycÞ, or
the model-based P̃ðycÞ—of the joint distribution of the selected categorical variables.

A variety of other model-based methods also exist to estimate conditional probabilities within sub-
groups, without estimating the corresponding cell percentages. One approach is to fit a generalized linear
model (GLM) to the observed data, using an appropriate link function to model the (categorical) depend-
ent variable as a linear combination of a set of predictor variables as well as some or all the higher-order
interactions between those variables at the researcher’s discretion (Maddala 1983; Long 1997). The condi-
tional probabilities of interest may be calculated from the coefficients estimated by the model for specified
values of the covariates.

In applications where observations are clustered into higher-level units, more sophisticated generalized
linear mixed models or multilevel models (MLMs) may also be applied (Agresti et al. 2000; Agresti 2002;
Gelman and Hill 2007). These models are particularly useful when each unit contains a small number of
observations, akin to the case of small cell sizes in high-dimension contingency tables. By assuming clus-
ter random effects, MLMs allow the within-unit conditional probability estimates to ‘‘shrink’’ toward the
grand mean, improving the resulting estimates by reducing their sampling variability. This is just another
form of smoothing in which more pooling is applied to estimates from units containing fewer observations
(Gelman and Hill 2007, 258). The technique is closely related to statistical approaches to small area es-
timation (Jackson 1989; Ghosh and Rao 1994; Rao 2003). In similar fashion, the aim is to use partial
pooling to improve estimates of the proportion of individuals in a population who possess some property
of interest, conditional upon a combination of (typically) geographic, and demographic factors. Although
neither the GLM nor the MLM produce estimates of PðycÞ, recent advances in multilevel regression with

Fig. 2 Comparison of small-sample maximum likelihood cell percentage estimates (left) and two-class latent class
model–based cell percentage estimates (right) to population cell percentages. Each point corresponds to one cell in the
480-cell table. The model-based estimates tend to be much closer to the true values as evidenced by their greater
proximity to the 45� line.
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poststratification (Park, Gelman, and Bafumi 2004) have been shown to produce accurate estimates of
public opinion at the state level (Lax and Phillips 2009). More generally, this technique is best applied
when small cell sizes arise not from repeated stratification, but rather from manifest variables containing
large numbers of outcome categories. In such cases, MLM-based methods may be preferred to the ap-
proach described in this paper. Of course, the structure of the observed data is not always conducive to a
random-effects specification.

The major drawback to the regression-based approach is that the conditional probability estimates are
highly sensitive to the choice of model specification. Again consider the problem of estimating the per-
centage of white males with incomes over $100,000 who are also political conservatives. A fully specified
GLMwould include as covariates indicator variables for race, sex, and each category of income, as well as
all the second- and third-order interactions. Because the independent variables are neither continuous nor
interval, little is gained by placing them in a regression framework; as I demonstrate below, models that
include all the higher-order interactions produce estimates that are nearly identical to those calculated di-
rectly from P̂ðycÞ. Yet, omitting particular higher-order interactions implicitly assumes that those effect
modifiers are zero. As discussed by Berry, DeMeritt, and Esarey (2010), decisions by applied researchers
about which interaction terms to include as covariates in a GLM are most often made idiosyncratically and
on an incorrect basis. The latent class model makes all these model specification issues moot by automati-
cally capturing the full set of interrelationships between the variables of interest in the density estimate.

3 Small-Cell Probabilities and Conditional Effects

Estimating characteristics of population subgroups using tabular data becomes extremely imprecise in
small samples or following repeated stratification. Even if an overall sample is very large, in a subgroup
with 100 observations, the theoretical margin of error for an estimated proportion will be as much as ±10%
at a 95% level of confidence. For a subgroup with 50 observations, the maximum margin of error jumps to
nearly ±15%. With 20 observations, the maximum margin of error is well over ±20%, rendering any
inferences from the sample to the population essentially uninformative. It is for this reason that tabular
analyses rarely stratify beyond three or four categorical variables at once before running out of cases upon
which to reliably base parameter estimates.

Populations corresponding to groups with so few observed cases can be quite large and substantively
important. In a typically sized public opinion survey of approximately 1000 respondents, 50 observations
represents 5% of the population; in the United States (as of 2010), that translates to groups comprising over
15 million individuals—larger than the states of Pennsylvania or Illinois. Or consider the demographic
category of black males aged 18–34; a group of nearly 5 million individuals but only 1.5% of the national
population (U.S. Census Bureau 2008). In a sample of 1000, this works out to just 15 individuals on
average; of course, in any particular sample, the number of young black males interviewed will vary
and could be potentially much less than 15. Sampling variability alone prevents researchers from obtaining
meaningful estimates of the characteristics of any groups this size or smaller. Estimating the conditional
effect of sex (or any other independent variable) on a chosen dependent variable for blacks aged 18–34 will
be even more imprecise because it also requires estimating the percentage of interest among black females
aged 18–34—another small subgroup.

The obvious and best solution to this problemwould be to collect larger samples. Inmost research situations,
however, this option is prohibitively expensive, time consuming, or even impossible once a study has been
completed. Instead, I show that preprocessing an observed cross-classification table by fitting a latent class
model canbe an efficient and reliable approach to estimating small-cell probabilities and conditional effects.
Asaruleofthumb,themethodoutperformstheMLEwhenrepeatedstratificationofcategoricaldataproduces
cell sizes of 40 observations or fewer. Simulation evidence indicates that the method may continue to out-
performtheMLEinevenlargercell sizes,whenestimatingcharacteristicsofsubgroups thatcomprisea larger
share of the population or when estimating marginal effects across multiple small subgroups.

3.1 Latent Class Model-Based Estimation

The MLE P̂ðycÞ is an unbiased estimate of PðycÞ, but it is subject to a large amount of sampling variation
when the number of observations is small. Applying a latent class model to the observed table, and using
the model-based P̃ðycÞ from equation (4) as an estimate of PðycÞ, produces a multivariate density estimate
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of the underlying population distribution that is highly consistent from sample-to-sample. The result is a
much more precise estimate of PðycÞ, which leads directly to more reliable estimates of conditional prob-
abilities and conditional effects when looking at the relationships between two or more variables.

The latent class model–based technique has a range of practical advantages as well. Unlike the MLE,
the model-based technique can estimate conditional probabilities even when the number of individuals
sampled from the subgroup of interest is zero. In addition, the latent class model frees the researcher from
the large number of often arbitrary (and potentially erroneous) modeling assumptions that go into the
specification of a GLM or related model. Nor does the latent class model require the data to possess
a hierarchical structure, as in an MLM. The result is that the latent class model is easier to implement
and interpret, less technically demanding, and far less time consuming to the researcher than other model-
based estimators.

3.2 Improving Inference by Reducing Sampling Variability

To demonstrate each of these points, I again treat the complete 2004 U.S. presidential election exit poll as
the known population and computationally simulate smaller random samples drawn from that population.
The quantity of interest will be the conditional probability that white and nonwhite male voters aged 18–
29 voted for John Kerry for president. These subgroups are chosen because they represent a suitably small
proportion of the overall sample: White males aged 18–29 are just 6% of the original set of interviewees,
whereas similarly aged nonwhite males make up less than 2.5%.

For repeated samples of sizes varying from 50 to 1000 individuals, I calculate the cell percentages P̂ðycÞ
of white and nonwhite, young, male, Kerry voters; that is, the MLE based on a four-way cross-tabulation
of the variables vote choice, race, sex, and age. I then fit a series of latent class models assuming one
through four latent classes to the vote choice, race, sex, and age variables in each simulated sample
and produce model-based estimates P̃ðycÞ of the same quantities using equation (4). In this manner,
no other data are needed beyond what was used to produce the MLEs. From both sets of cell percentage
estimates, I calculate the conditional probabilities that voters in each demographic group voted for Kerry:

PrðKerry jwhite; male; 182 29Þ5Prðwhite; male; 18229; KerryÞ
Prðwhite; male; 18229Þ

and

PrðKerry j nonwhite; male; 182 29Þ5Prðnonwhite; male; 18229; KerryÞ
Prðnonwhite; male; 18229Þ :

I use these quantities to further estimate the marginal effect of race on voting for Kerry for males aged 18–
29: Pr(Kerry j white, male, 18–29) 2 Pr(Kerry j nonwhite, male, 18–29).

Finally, I apply a multinomial logistic regression model to the sample data, with vote choice as the
dependent variable (including three categories for Bush, Kerry, and other), and race, sex, and age—
recoded as indicator variables—as the independent variables along with each of their higher-order inter-
action terms.5 Of the 13,660 exit poll respondents stating their vote choice, 182, or 1.3%, voted for a
candidate other than Bush or Kerry. Retaining this small but not insignificant segment of voters tests
the modeling assumptions of both the latent class model and the GLM and permits estimation of Kerry’s
actual vote share rather than just his share of the two-party vote. From the resulting coefficient estimates, I
again calculate the predicted percentage of white and nonwhite young males who voted for Kerry.

Each of these estimates are compared with the ‘‘true’’ percentage of voters of each type who voted for
Kerry according to the full sample: 46.3% of white males aged 18–29 and 71.5% of nonwhite males aged

5The variables sex and race each have two outcome categories, and the age variable has four categories. Expressing these independent
variables as indicators, and omitting one outcome category for each, produces five first-order terms, seven second-order terms (all
two-way interactions between sex, race, and age), and three third-order terms (all three-way interactions)—for a total of 15 terms on
the right-hand side (or 16, including the constant).
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18–29. The ‘‘true’’ marginal effect of race on vote choice for young males is thus approximately 25 per-
centage points. Based on these values, I calculate the root mean squared error (RMSE) of each estimator
over repeated simulation of subsamples of varying sizes drawn from the original large data set. Smaller
values of the RMSE indicate that the estimator is producing parameter estimates that are closer, on aver-
age, to the true value in the population.

The reduction in RMSE due to smoothing by the two or more class latent class model is most pro-
nounced in small samples where the variance of the observed cell percentages is greatest (Fig. 3). Even in
samples of 200, the average number of young white males is only approximately 12; and young nonwhite
males are fewer than half that number. Using the model-based density estimate in place of the estimate
taken directly from the observed contingency table can reduce the RMSE of estimates of conditional
probabilities by one-half or more in samples with fewer than 200 observations. The model-based estimator
particularly excels when estimating marginal effects—in this case, the effect of race on vote choice for
males aged 18–29—because this depends on prior estimation of two conditional probabilities, both of
which are subject to their own sampling error.

Fitting a basic model with just two latent classes produces the best estimates of conditional probabilities
and marginal effects in both small and moderate sample sizes. Models with more than two latent classes fit
the observed tables more closely; as a result, there is less smoothing, greater sample-to-sample variation in
the density estimate and an RMSE closer to that of the observed cell percentages. For these reasons, it is
recommended to estimate the two-component latent class model when preprocessing the observed data.

As a conservative rule of thumb, the latent class model–based estimates of conditional probability are
superior to the MLE in subgroups containing 40 observations or fewer. They may outperform the MLE in
larger subgroups as well. Figure 3 demonstrates that in samples up to size 1000, the model-based estimates
have a smaller RMSE than the MLE. Beyond 1000 observations, the estimators are effectively equivalent.
As sample size increases, the RMSE of the MLE eventually falls below that of the model-based estimates.
This is because, as discussed in Section 3.3, the model-based estimates sacrifice a small amount of un-
biasedness in exchange for a considerable reduction in the variance of the estimator. Additional simu-
lations (not shown) indicate that for estimating the probability that nonwhite males aged 18–29 voted
for Kerry, the MLE does not overtake the two-class estimator until N 5 1500. Recall that this demographic
subgroup represents just 2.5% of the U.S. population. Multiplying 0.025 by 1500 observations gives us the
(approximate) 40-observation benchmark. The reason this is a conservative rule of thumb is because in
subgroups that make up a larger share of the population—for example, among white males aged 18–
29—the model-based estimator may continue to have a lower RMSE than theMLE in even larger samples.

The one-class latent class model should not be used, though it is instructive to note the superiority of
this estimator in the very smallest samples. This model assumes that the conditional cell percentages are
equal to the marginal cell percentages—that is, in this example,

PrðKerryÞ5PrðKerry jwhite; male; 182 29Þ5PrðKerry j nonwhite; male; 18229Þ;

Fig. 3 RMSE of maximum likelihood, GLM, and latent class model–based estimates of the conditional probability
that young white and nonwhite males voted for Kerry for president as well as the marginal effect of race on vote choice.
Results are based on 2000 simulated samples of size 50–1000.
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or that the percentage of white and nonwhite males aged 18–29 who voted for Kerry are both equal to the
overall percentage of survey respondents who voted for Kerry: 51.7%. Depending upon the application,
this may or may not be an accurate assumption; here, clearly, it is not. But because the sample-to-sample
variance in the estimated marginal Pr(Kerry) is so small (due to a much larger sample size) compared with
the variance of the small-cell conditional estimate, the marginal probability will be a better estimate, on
average, in very small samples and as long as the true conditional and marginal probabilities are not too
dissimilar.6 The problem, of course, is that there is no way of knowing a priori how dissimilar the two
population values actually are. Additionally—and unhelpfully—any estimates of conditional effects will
necessarily equal zero as is apparent in the right-hand plot in Fig. 3.

The lesson for applied researchers is this: If a subgroup is so small that the observed small-cell (condi-
tional) probability will be a worse estimate of the population value than the corresponding marginal prob-
ability, then the most prudent choice is to use neither. Fortunately, a minimal amount of smoothing using a
two-class latent class model can be effective in recovering the small-cell probability in the underlying
population.

Estimates based on a fully specified multinomial logit model are nearly indistinguishable from simply
using the cell percentages directly observed in the cross-classification table. It is possible that a multi-
nomial logit model specified with fewer than the complete set of interactions among the independent
variables might have produced estimates with a lower RMSE—but which among the myriad potential
specifications to choose? The latent class model–based estimation procedure sidesteps the issue altogether.

3.3 Bias in Latent Class Model-Based Estimates

Although the latent class model improves the precision of estimated conditional probabilities andmarginal
effects, the smoothing does introduce a small amount of bias. Simonoff (1995, 48) captures this trade-off
succinctly: ‘‘One way to view the use of smoothing methods is as an attempt to balance the low bias of
undersmoothing with the low variability of oversmoothing.’’ The question is by how much variability is
reduced and at what cost in bias. Figure 4 separates out the bias and variance of each estimator based upon
2000 random samples of 200 individuals drawn from the complete 2004 election data set. For white males
aged 18–29 (left panel), the model-based estimates tend to overestimate the true percent voting for Kerry
by approximately 5% on average. For nonwhite males (center panel), the overestimation is approximately
8%. Meanwhile, the MLE is unbiased across the 2000 simulated samples.

In practice, however, we only observe one sample—not 2000. And in any one sample, the model-based
estimates are much more reliable than the observed cell percentages. Among random samples of 200, the
number of white males aged 18–29 varied from aminimum of 2 to a maximum of 26. The sampled number

Fig. 4 Model-based estimates introduce a small amount of bias to achieve a large reduction in variance. Points denote
the mean and variance of observed conditional probabilities (MLE), as well as following density estimation by latent
class models with two through four latent classes, across 2000 simulated data sets of 200 observations. Thick bars span
80% of the simulated estimates; thin bars denote the range of estimates from minimum to maximum.

6This logic is highly similar to that of the benefits of shrinkage estimators in general; for example, in the context of a Bayesian
hierarchical model, where the RMSE is reduced by adjusting within-unit estimates toward the global mean.
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of nonwhite males 18–29 ranged from 0 to just 13. In the former group, preprocessing the observed cross-
classification table using a four-class model reduces the variance of the estimator by nearly half compared
with the MLE. The variance of the two-class model-based estimate is less than one-third that of the MLE.

Moving to the even smaller group of nonwhites, the variance of the MLE is much larger, but the var-
iance of the model-based estimates stays almost unchanged. Now, the effect of preprocessing the data is an
80% reduction in variance for the two-class model compared with the MLE. Whereas the range of es-
timates from the two-class model is 38–98%, the range of estimates taken from the observed cross-
classification table is 0–100%, with 100% being the modal MLE, appearing in over one-quarter of all
samples. In an additional 1% of samples, no nonwhite young males were present in the sample; the latent
class model can still produce estimates of the percentage of nonwhite young males voting for Kerry, but
the MLE cannot.

The latent class model–based estimates are minimally biased but also much more tightly distributed
around their expectedvalue in repeated samples.With fewer latent classes—andhence,greater smoothing—
the variance of the sampling distribution of P̃ðycÞ decreases. The minor amount of bias in the model-based
estimates is easily tolerable from an applied perspective, andwell worth the substantial decrease invariance
(and RMSE) that the density estimator provides.

4 Application: Election Forecasting in Small Subgroups

A key question leading up to the 2008 U.S. presidential election was whether political independents would
‘‘break’’ toward Democrat Barack Obama or Republican John McCain on Election Day. The question
focused especially on white independents, as it was understood that just as Republican voters would over-
whelmingly support McCain, Democrats, and nonwhites would be largely voting for Obama. Observers
also debated what effect incomewould play on vote choice, as well as if a ‘‘gender gap’’ would persist with
men less likely than women to vote for Obama.

In the final week of the campaign, the CBS News organization conducted four national surveys asking
voters if they intended to support Obama or McCain as well as a battery of other attitudinal and dem-
ographic items (CBS News 2008a, 2008b, 2008c, 2008d). Although the overall sample sizes of these polls
were large, stratifying by race, sex, party identification, and family income level leaves relatively few
observations from which to draw reliable inferences about vote intentions within each subgroup (Table 1).
The number of white male independents with family income below $15,000, for example, ranged from
only 4–13 respondents across the four polls. As a result, we expect a large amount of sampling variation
from poll-to-poll in the observed percentage of white male independents at each level of income who
intend to vote for Obama. In the case of white male independents earning $75–100,000, estimates of
Obama’s vote share ranged from 28% to 62% across the four polls—a difference of 34 percentage points.
For the purpose of forecasting the election outcome, results from any single poll will be at best uninfor-
mative; and at worse, misleading.

To assess the accuracy of predictions based upon cross-tabulating the ‘‘raw’’ survey data versus model-
basedpredictionsproducedbya two-class latent classmodel, I compareboth setsofestimateswith the results

Table 1 Sample sizes of four CBS News polls prior to Election Day, 2008, as well as numbers of respondents in
various subgroups

Date of poll

10/28–30 10/29–31 10/29–11/1 10/31–11/2

Complete sample 833 1390 1167 1051
Whites 716 1192 995 876
White males 293 488 402 357
White male independents 105 169 141 126
and, income under $15,000 9 13 10 4
and, income $15–30,000 13 19 10 8
and, income $30–50,000 14 28 24 27
and, income $50–75,000 25 34 31 18
and, income $75–100,000 20 27 19 15
and, income over $100,000 17 40 38 44
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of the very large, 18,018-respondent postelection exit poll fielded by theNational Election Pool (2008). Ap-
plying the latentclassmodel to thepreelectionCBSsurveydataconsistentlyandcorrectly forecasts theactual
election result in each of the four polls at multiple levels of stratification. The latent class model recovers
information that exists in each survey data set but is not utilized in a basic contingency table.

I begin by examining the voting intentions of white males at each level of family income. Estimates of
Obama’s vote share based upon the four-way table of race, sex, income, and vote choice fluctuate in a 5–15
percentage point range across the four polls. To attempt to improve upon these estimates, I apply a two-
class latent class model to these four variables in each survey data set. I then calculate the model-based
estimated percent voting for Obama in each subgroup using equation (4). Results are shown in Fig. 5a. The
latent class model–based estimates demonstrate less sample-to-sample variability than the observed per-
centages, but the difference is minimal. The dashed lines in Fig. 5 show the actual percentage of white
males at each level of income who reported voting for Obama in the exit poll.7 The latent class
model–based estimates match the results from the exit poll almost identically in both the trend and

Fig. 5 Estimated effect of income on vote choice for (a) all white males, (b) white male independents, and (c) white
male independents over age 64 in four separate CBSNews polls leading up to the 2008 U.S. presidential election. Gray
lines connect observed conditional probabilities, with cell sizes labeled adjacent to each point. Black lines denote
latent class model–based estimates. The actual proportion of white males voting for Obama, according to the 2008
presidential election exit poll, is indicated by the dashed line. Income is measured across six categories, from under
$15,000 to over $100,000, as in Table 1.

7Percentages from the exit poll are obtained following weighting by the survey’s officially released sampling weights. The survey
included responses from 5502 white males.

184 Drew A. Linzer

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pr
00

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpr006


the level of support for Obama at different levels of income. At the very least, no harm is being done by the
model-based estimator, as it does not appear that the model-based estimates are systematically biased
above or below the observed cell percentages.

The power of the latent class model–based estimation procedure becomes more strongly evident in
smaller subgroups. Stratifying further by party identification, Fig. 5b shows the observed percent vot-
ing for Obama among white male independents at various levels of income, as well as the latent class
model–based estimates following application of a two-class model to the five-way table in each CBS
poll. The model-based estimates consistently indicate that white male independents earning over
$100,000 are approximately 20 percentage points less likely to vote for Obama than those earning
<$15,000. From poll-to-poll, each set of model-based estimates reveals almost exactly the same re-
lationship. The observed cell percentages, in contrast, fluctuate markedly across the four surveys,
masking the finding—borne out by the election results—that greater income is associated with de-
creased support for Obama.8

Finally, I stratify the table once more, this time by age, and consider the vote choices of elderly white
male independents—those over age 64. The number of such individuals in each of the four polls is, re-
spectively, 29, 40, 33, and 26—and these are then further subdivided across the six income categories. As
shown in Fig. 5c, the observed cell percentages of support for Obama among elderly white male inde-
pendents at different levels of income vary wildly between the four polls, failing to convey any consistent
or meaningful information. Instead, I once again reestimate the two-class latent class model, adding in the
four-category age variable to the variables for race, sex, party identification, family income, and vote
choice. The latent class model–based estimates still succeed in revealing the underlying pattern in the
relationship in all four of the preelection polls.

5 Conclusion

This paper has proposed a solution to the problem posed by small cell sizes when estimating table-based
statistics in finite samples and following stratification by multiple categorical variables. In research based
on public opinion survey data, this is a barrier frequently confronted by academics and applied practi-
tioners alike. In large contingency tables, having too few observations per cell leads to highly unreliable
estimates of cell percentages, conditional probabilities, and marginal effects. Most often, researchers sim-
ply decline to report these quantities once cell sizes become too small, recognizing that their estimates are
subject to extremely large amounts of sampling error.

I show that for small subgroups arising from repeated stratification, improved estimates of conditional
probabilities and marginal effects can be produced by preprocessing the observed data with a latent class
model. As a density estimator, the latent class model can closely approximate the underlying joint dis-
tribution of the variables of interest based upon the observed multivariate data. This density estimate will
be relatively stable from sample-to-sample. As a result, substituting model-based cell percentage esti-
mates P̃ðycÞ for the observed cell percentages, P̂ðycÞ, can significantly reduce the mean squared error
of estimates of conditional probabilities and marginal effects—especially for subgroups containing 40
observations or fewer.

One of the most appealing features of the method described in this paper is its ease of use. Unlike when
estimating a GLM orMLM, the latent class model–based approach does not require the researcher to make
a large number of potentially arbitrary or idiosyncratic decisions about how to specify the model. Two
latent classes are generally sufficient to reliably estimate conditional probabilities and marginal effects.
Software to perform the necessary calculations is freely available as part of the R statistical computing

8The observed cell sizes shown in Fig. 5 are smaller than those given in Table 1 because a small number of respondents in each
subcategory declined to state their vote intention.
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program. The procedure has foreseeable benefits in studies of public opinion, marketing, demography,
epidemiology, and other areas in which multivariate contingency table analysis is common and sample
sizes are moderate to small.
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